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Abstract. In this article we introduce new bounds on the e�ective condition number of de
ated
and preconditioned-de
ated symmetric positive de�nite linear systems. For the case of a subdomain
de
ation such as that of Nicolaides (1987), these theorems can provide direction in choosing a proper
decomposition into subdomains. If grid re�nement is done keeping the subdomain grid resolution
�xed, the condition number is insensitive to the grid size. Subdomain de
ation is very easy to
implement and has been parallelized on a distributed memory system with only a small amount of
additional communication. Numerical experiments for a steady-state convection-di�usion problem
are included.
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1. Background: preconditioning and de
ation. It is well known that the
convergence rate of the conjugate gradient method is bounded as a function of the
condition number of the system matrix to which it is applied. Let A 2 R

n�n be
symmetric positive de�nite. We assume that the vector b 2 Rn represents a discrete
function on a grid 
 and that we are searching for the vector x 2 R

n on 
 which
solves the linear system

Ax = b:

Such systems are encountered, for example, when a �nite volume/di�erence/element
method is used to discretize an elliptic partial di�erential equation de�ned on the
continuous analog of 
. In particular our goal is to develop e�cient serial and parallel
methods for applications in incompressible 
uid dynamics, see [26, 25].

Let us denote the spectrum of A by �(A) and the ith eigenvalue in nondecreasing
order by �i(A) or simply by �i when it is clear to which matrix we are referring. After
k iterations of the conjugate gradient method, the error is bounded by (cf. [8], Thm.
10.2.6):

kx� xkkA � 2 kx� x0kA
�p

�� 1p
�+ 1

�k
(1.1)

where � = �(A) = �n=�1 is the spectral condition number of A and the A-norm of x
is given by kxkA = (xTAx)1=2. The error bound (1.1) does not tell the whole story,
however, because the convergence may be signi�cantly faster if the eigenvalues of A
are clustered [21].

When A is the discrete approximation of an elliptic PDE, the condition number
can become very large as the grid is re�ned, thus slowing down convergence. In this
case it is advisable to solve, instead, a preconditioned system K�1Ax = K�1b, where
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the symmetric positive de�nite preconditioner K is chosen such that the spectrum of
K�1A is more clustered or has a smaller condition number than that of A. Further-
more,K must be cheap to solve relative to the improvement it provides in convergence
rate. A �nal desirable property in a preconditioner is that it should parallelize well,
especially on distributed memory computers. Probably the most e�ective precondi-
tioning strategy in common use is to takeK = LLT to be an incomplete Cholesky (IC)
factorization of A [16]. For discretizations of second order PDEs in two dimensions,
de�ned on a grid with spacing h, we have with incomplete Cholesky factorization,
� � h�2; with a modi�ed IC factorization[9, 1], � � h�1; and with a multigrid cycle,
� � 1. Preconditioners such as multigrid and some domain decomposition methods,
for which the condition number of the preconditioned system is independent of the
grid size, are termed optimal.

Another preconditioning strategy that has proven successful when there are a few
isolated extremal eigenvalues is de
ation [18, 14, 15]. Let us de�ne the projection P
by

P = I �AZ(ZTAZ)�1ZT ; Z 2 Rn�m ; (1.2)

where Z is the de
ation subspace, i.e. the space to be projected out of the residual,
and I is the identity matrix of appropriate size. We assume that m � n and that
Z has rank m. Under this assumption Ac � ZTAZ may be easily computed and
factored and is symmetric positive de�nite. Since x = (I � P T )x+ P Tx and because

(I � P T )x = Z(ZTAZ)�1ZTAx = ZA�1c ZT b (1.3)

can be immediately computed, we need only compute P Tx. In light of the identity
AP T = PA, we can solve the de
ated system

PA~x = Pb (1.4)

for ~x using the conjugate gradient method and premultiply this by P T . Obviously
(1.4) is singular, and this raises a few questions. First, the solution ~x may contain an
arbitrary component in the null space of PA, i.e. in spanfZg.1 This is not a problem,
however, because the projected solution P Tx is unique. Second, what consequences
does the singularity of (1.4) imply for the conjugate gradient method?

Kaasschieter [12] notes that a positive semide�nite system can be solved as long
as the right hand side is consistent (i.e. as long as b = Ax for some x). This is certainly
true for (1.4), where the same projection is applied to both sides of the nonsingular
system. Furthermore, he notes (with reference to [21]) that because the null space
never enters the iteration, the corresponding zero-eigenvalues do not in
uence the
convergence. Motivated by this fact, we de�ne the e�ective condition number of a
positive semide�nite matrix A� 2 Rn�n with corank m to be the ratio of its largest
to smallest positive eigenvalues:

�e�(A
�) =

�n
�m+1

:

Example. To see that the condition number of PA may be better than that of A,
consider the case in which Z is an invariant subspace of A. Note that PAZ = 0, so that PA
has m zero-eigenvalues. Furthermore, since A is symmetric positive de�nite, we may choose

1We will use the notation spanfZg to denote the column space of Z.
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the remaining eigenspace Y in the orthogonal complement of spanfZg, i.e. Y TZ = 0 so that
PY = Y . However, AY = Y B for some invertible B; therefore, PAY = PY B = Y B, and
spanfY g is an invariant subspace of PA. Evidently, when Z is an invariant subspace of A,

�e�(PA) =
�n(A)

�m+1(A)
:

In summary, de
ation of an invariant subspace cancels the corresponding eigenvalues, leaving

the rest of the spectrum untouched.

This idea has been exploited by several authors. For nonsymmetric systems,
approximate eigenvectors can be extracted from the Krylov subspace produced by
GMRES. Morgan [17] uses this approach to improve the convergence after a restart.
In this case, de
ation is not applied as a preconditioner, but the de
ation vectors are
augmented with the Krylov subspace and the minimization property of GMRES en-
sures that the de
ation subspace is projected out of the residual. For more discussion
on de
ation methods for nonsymmetric systems, see [13, 7, 5, 19, 4, 2]. Other authors
have attempted to choose a subspace a priori that e�ectively represents the slowest
modes. In [27] de
ation is used to remove a few stubborn but known modes from
the spectrum. Mans�eld [14] shows how Schur complement-type domain decomposi-
tion methods can be seen as a series of de
ations. Nicolaides [18] chooses Z to be
a piecewise constant interpolation from a set of m subdomains and points out that
de
ation might be e�ectively used with a conventional preconditioner. Mans�eld [15]
uses the same \subdomain de
ation" in combination with damped Jacobi smoothing,
obtaining a preconditioner which is related to the two-grid method.

In this article we introduce new bounds on the e�ective condition number of
de
ated and preconditioned-de
ated symmetric positive de�nite linear systems. For
the case of a subdomain de
ation such as that of Nicolaides (1987), these theorems
can provide direction in choosing a proper decomposition into subdomains. If grid
re�nement is done keeping the subdomain grid resolution �xed, the condition number
is insensitive to the grid size. Subdomain de
ation is very easy to implement and
has been parallelized on a distributed memory system with only a small amount
of additional communication. Numerical experiments for a steady-state convection-
di�usion problem are included.

2. A condition number bound for de
ation. Nicolaides [18] proves the fol-
lowing bound on the spectrum of PA:

�m+1(PA) = min
vT v

vTA�1v
; �n(PA) = max

vT v

vTA�1v
;

where v is taken in spanfZg?. In this section we give a bound of a di�erent 
avor
which will be used in the subsequent sections to construct a preconditioning strategy
with an optimal convergence property.

First we need the following result on the preservation of positive semide�niteness
under de
ation.

Lemma 2.1. Let C be positive semide�nite and P be a projection (P 2 = P ), then
if PC is symmetric, it is positive semide�nite.

Proof. By hypothesis, 0 � xTCx for all x. In particular, 0 � (P Tx)TC(P Tx) =
xTPCP Tx so that PCP T = P 2C = PC is positive semi-de�nite.

The next theorem provides a bound on the condition number of PA, and is our
main result:
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Theorem 2.2. Let A be symmetric positive de�nite, P be de�ned by (1.2), and
suppose there exists a splitting A = A�+C such that A� and C are symmetric positive
semide�nite with N (A�) = spanfZg the null space of A�. Then

�i(A
�) � �i(PA) � �i(A

�) + �max(PC): (2.1)

Moreover, the e�ective condition number of PA is bounded by

�e�(PA) � �n(A)

�m+1(A�)
: (2.2)

Proof. From (1.2) it is obvious that PA is symmetric. Since Z is in the null
space of A�, we have that PA� = A� and is therefore also symmetric by hypothesis.
Symmetry of PC = PA � A� follows immediately; and by assumption C is positive
semide�nite, so we can apply Lemma 2.1 to arrive at �min(PC) � 0, with equality
holding in any case due to singularity of P . The bound (2.1) now follows from Theorem
8.1.5 of [8]:

�i(PA
�) + �min(PC) � �i(PA) � �i(PA

�) + �max(PC):

Furthermore, because PA = A�AZ(ZTAZ)�1(AZ)T is the di�erence of positive
(semi-)de�nite matrices, the same theorem (8.1.5 of [8]) gives �max(PA) � �max(A).
This upper bound together with the lower bound in (2.1) proves (2.2).

There is also a preconditioned version of the previous theorem.
Theorem 2.3. Assume the conditions of Theorem 2.2 and let K be a symmetric

positive de�nite preconditioner with Cholesky factorization K = LLT . Then,

�i(L
�1A�L�T ) � �i(L

�1PAL�T ) � �i(L
�1A�L�T ) + �max(L

�1PCL�T ); (2.3)

and the e�ective condition number of L�1PAL�T is bounded by

�e�(L
�1PAL�T ) � �n(L

�1AL�T )

�m+1(L�1A�L�T )
: (2.4)

Proof. De�ne Â = L�1AL�T , Â� = L�1A�L�T , Ĉ = L�1CL�T (all congruence
transformations), Ẑ = LTZ and

P̂ = I � ÂẐ(ẐT ÂẐ)�1ẐT = L�1PL:

Note that P̂ is a projection and P̂ Â is symmetric, also that Ẑ is in the null space
of Â� so that P̂ Â� = Â�. Thus, Theorem 2.2 applies directly to the de
ated system
matrix P̂ Â. The conclusions follow immediately from the de�nitions of Â and Â�.

Remark. Experience with discretized PDEs indicates that the greatest im-
provement in convergence is obtained by removing the smallest eigenvalues from the
spectrum. It is therefore the lower bounds of (2.1) and (2.3) which are of most con-
cern. Theorem 2.3 suggests that it might be better to construct a preconditioner
for A� rather than for A in this case. However, care should be taken that a good
preconditioner for A� does not increase the upper bound in (2.3) when applied to A.
See Kaasschieter [12] for a discussion about preconditioning inde�nite systems.

In the next section we consider applications of Theorems 2.2 and 2.3 in lieu of a
speci�c choice of the subspace of de
ation Z.
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3. Subdomain de
ation. The results of the previous section are independent
of the choice of de
ation subspace Z in (1.2). As mentioned in Section 1, de
ation
of an eigenspace cancels the corresponding eigenvalues without a�ecting the rest of
the spectrum. This has led some authors to try to de
ate with \nearly invariant"
subspaces obtained during the iteration, and led others to try to choose in advance
subspaces which represent the extremal modes.

For the remainder of this article we make a speci�c choice for the subspace Z in
(1.2), based on a decomposition of the domain 
 with index set I = fi jxi 2 
g into
m nonoverlapping subdomains 
j , j = 1; : : : ;m with respective index sets Ij = fi 2
I jxi 2 
jg. We assume that the 
j are simply connected graphs covering 
. De�ne
Z by:

zij =

�
1; i 2 Ij ;
0; i 62 Ij : : (3.1)

With this choice of Z, the projection (1.2) will be referred to as subdomain de
ation.
Such a de
ation subspace has been used by Nicolaides [18] and Mans�eld [14, 15].

This choice of de
ation subspace is related to domain decomposition and multi-
grid methods. The projection P can be seen as a subspace correction in which each
subdomain is agglomerated into a single cell, see for example [11]. Within the multi-
grid framework, P can be seen as a coarse grid correction using a piecewise constant
interpolation operator with very extreme coarsening.

Note that the matrix Ac = ZTAZ, the projection of A onto the de
ation subspace
Z, has sparsity pattern similar to that of A. We will see that the e�ective condition
number of PA improves as the number of subdomains is increased (for a �xed problem
size). However this implies that the dimension of Ac also increases, making direct
solution expensive. By analogy with multigrid, it might be advantageous in some
applications to solve Ac recursively. In a parallel implementation this would lead to
additional idle processor time, as it does with multigrid.

3.1. Application to Stieltjes matrices. Using subdomain de
ation, we can
identify matrices A� and C needed for application of the de
ation Theorems 2.2 and
2.3 to the class of irreducibly diagonally dominant Stieltjes matrices (i.e. symmetric
M-matrices). Such matrices commonly arise as a result of discretization of symmet-
ric elliptic and parabolic PDEs. For our purposes the following characteristics are
important:

� A is symmetric positive de�nite and irreducible
� aii > 0, aij � 0, for i 6= j.
� aii +

P
j 6=i aij � 0 with strict inequality holding for some i.

For a matrix A, de�ne the subdomain block-Jacobi matrix B(A) 2 Rn�n associated
to A by

bij =

�
aij ; if i; j 2 Ik, for some k
0; otherwise

: (3.2)

Notice that since each block Bjj is a principle submatrix of A, it is symmetric positive
de�nite. Also, since B is obtained from A by deleting o�-diagonal blocks containing
only negative elements, the Bjj are at least as diagonally dominant as the correspond-
ing rows of A. Furthermore, the irreducibility of A implies that A itself cannot be
written in block diagonal form, so to construct B it is necessary to delete at least
one nonzero block from each block-row. As a result, at least one row of each Bjj is
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strictly diagonally dominant. We will further assume that the so-constructed Bjj are
irreducible.2 It follows from Corollary 6.4.11 of [10] that the Bjj are again Stieltjes
matrices.

Additionally, de�ne 1 = (1; : : : ; 1)T with the dimension following from the con-
text, such that A1 is the vector of row sums of A. Let the matrix A� be de�ned
by

A� = B � diag (�(B)) : (3.3)

Each block A�jj of A
� has zero row sums|so 1 is in the null space of each block|but

is further irreducible and weakly diagonally dominant and has the M-matrix property.
According to Theorem 4.16 of [3], a singular M-matrix has a null space of rank exactly
one. It follows that the matrix Z de�ned by (3.1) is a basis for the null space of A�.

Putting these ideas together we formulate:
Theorem 3.1. If A is an irreducibly diagonally dominant Stieltjes matrix and

A� de�ned by (3.3) has only irreducible blocks, then the hypotheses of Theorem 2.2
are met.

Example. Consider a Poisson equation on the unit square with homogeneous Dirichlet
boundary conditions

��u = f; u = 0; u 2 @
; 
 = [0; 1]� [0; 1]: (3.4)

The problem is discretized using central �nite di�erences on a 9 � 9 grid, and subdomain
de
ation is applied with a 3� 3 decomposition into blocks of resolution 3 � 3. The system
matrix A is pre- and post-multiplied by the square root of its diagonal. Figure 3.1 shows the
eigenvalues of A, PA and A�. The extreme positive eigenvalues of these three matrices are:

�min �max
A 0.06 1.94
PA 0.27 1.91
A� 0.25 1.50

Both the table and the �gure support the conclusions of Theorem 2.2; namely, that the

largest eigenvalue of A and the smallest nonzero eigenvalue of A� bound the spectrum of

PA. (Note that each eigenvalue of A� has multiplicity equal to the number of blocks|9 in

this case.) We observe also that the bounds are reasonably sharp.

Each diagonal block A�jj of the matrix A
� as de�ned by (3.3) can be interpreted as

the discretization of a related Neumann problem on the jth subdomain. By Theorem
2.2, the e�ective condition number of the de
ated matrix PA is determined by the
smallest nonzero eigenvalue of A�|in this case, the smallest nonzero eigenvalue over
the set of related Neumann problems on the subdomain grids, i.e.

�m+1(PA) = min
j

�2(A
�
jj):

Theorem 2.2 thus says that subdomain de
ation e�ectively decouples the original sys-
tem into a set of independent Neumann problems on the subdomains, with convergence
governed by the \worst conditioned" Neumann problem. This implies an optimality
result, since|if we can somehow re�ne the grid without a�ecting the worst condi-
tioned Neumann problem|the condition number will also remain unchanged.

For an isotropic problem on a uniform grid, for example, this can be achieved
by simply �xing the subgrid resolutions and performing re�nement by adding more
subdomains. The numerical experiments of Section 6 support this observation.

2This is generally the case with matrices arising from discretization of PDEs on simply connected
domains. If a block Bii is reducible, then it may be possible to decompose Bii into additional
subdomains which are irreducible.



DEFLATION BASED PRECONDITIONERS 7

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 3.1. The eigenvalues of A(*), PA(�) and A�(� � � ).

3.2. Application to �nite element sti�ness matrices. A result similar to
the above discussion on M-matrices holds for �nite element sti�ness matrices. We
brie
y describe it here. Suppose we have a domain 
 whose boundary is given by @
 =
@
D [ @
N , with Dirichlet boundary conditions on @
D and Neumann boundary
conditions on @
N . Let 
 be decomposed into m nonoverlapping subdomains 
j ,
j = 1; : : : ;m, and de�ne the �nite element decomposition of 
 by

�
 = [i2I�ei;

Let the index set I be divided into m+1 disjoint subsets I1; : : : ; Im and Ir, de�ned
by

Ij =
�
i 2 I j ei � 
j and �ei \ @
D = ?

	
;

and Ir = In [j Ij . Figure 3.2 shows an example of a domain with quadrilateral
elements and two subdomains.

The sti�ness matrix A is de�ned as the sum of elemental sti�ness matrices Aei :

A =
X
i2I

Aei ;

where the elemental matrices are assumed to be positive semide�nite. This is always
the case when the integrals in the element matrices are computed analytically. We
assume that A is symmetric positive de�nite. This is normally true if the solution is
prescribed somewhere on the boundary. The matrix A� needed for Theorem 2.2 is
de�ned by

A� =
X

i2InIr

Aei :

Note that A� is block diagonal and the blocks A�jj can be interpreted as a �nite
element discretization of the original system on the subdomain 
j with homogeneous
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δ ΩN
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2

Fig. 3.2. The domain 
 is decomposed into two subdomains (the shaded region is Ir)

Neumann boundary conditions. This implies that �1(A
�
jj ) = 0 and that Z is in the

null space of A�. Clearly A� is positive semide�nite, as is

C =
X
i2Ir

Aei :

To ensure that �m+1(A
�) 6= 0, it is necessary that every grid point xk 2 �
n@
D be

contained in a �nite element ei with i 2 [mj=1Ij ; otherwise the ith row of A� contains
only zero elements.

4. Guidelines for selecting subdomains. We can use the results of the pre-
vious section to give guidance in choosing a good decomposition of the domain 

such that the \worst conditioned related Neumann problem" is as well conditioned as
possible. We consider two cases: a Poisson equation on a stretched uniform grid, and
a di�usion equation with a discontinuity in the di�usion coe�cient.

4.1. Large domain/grid aspect ratios. Consider the Poisson equation with
homogeneous Neumann boundary conditions on a rectangular domain 
:

��u = f; @u=@n̂ = 0; u 2 @
;

where n̂ denotes the unit normal vector to the boundary. This equation is discretized
using cell-centered, central �nite volumes on a uniform Nx � Ny grid having cell
dimensions hx � hy:

1

h2x
(�uj�1;k + 2uj;k � uj+1;k) +

1

h2y
(�uj;k�1 + 2uj;k � uj;k+1) = fj;k;

for j = 0; : : : ; Nx and k = 0; : : : ; Ny. Assume central discretization of the boundary
conditions

u�1;k = u0;k; etc.;

then, the eigenvalues of the discretization matrix are given by:

�j;k =
4

h2x
sin2

�
j�

2(Nx + 1)

�
+

4

h2y
sin2

�
k�

2(Ny + 1)

�
: (4.1)



DEFLATION BASED PRECONDITIONERS 9

4 x 42 x 8 8 x 2

Fig. 4.1. Three decompositions of the unit square into 16 subdomains.

The largest eigenvalue is �Nx;Ny
and the smallest nonzero eigenvalue is the minimum

of �0;1 and �1;0. Substituting into (4.1), and assuming Nx; Ny � 1, we �nd

�Nx;Ny
� 4

h2x
+

4

h2y
;

�0;1 � 4

h2y

�
�

2(Ny + 1)

�2

=
�2

h2y(Ny + 1)2
;

�1;0 � 4

h2x

�
�

2(Nx + 1)

�2

=
�2

h2x(Nx + 1)2
: (4.2)

The decomposition problem can be stated as follows: For a �xed cell aspect ratio
Qc � hx=hy and a �xed total number of cells C � NxNy = const, �nd the grid aspect
ratio Qg � Nx=Ny minimizing the e�ective condition number

�e� = max

�
�Nx;Ny

�0;1
;
�Nx;Ny

�1;0

�

= 4=�2max
�
(1 +Q�2c )(C=Nx + 1)2; (1 +Q2

c)(Nx + 1)2
	
:

Since both arguments of the maximum are monotone functions of positive Nx, one
increasing and the other decreasing, the condition number is minimized when these
arguments are equal:

(1 +Q�2c )(C=Nx + 1)2 = (1 +Q2
c)(Nx + 1)2

1

Q2
c

=
1 +Q�2c
1 +Q2

c

=
(Nx + 1)2

(Ny + 1)2
� Q2

g :

Thus, for constant coe�cients and a uniform grid, one should choose a decomposition
such that the subdomain grid aspect ratio is the reciprocal of the cell aspect ratio;
that is, one should strive for a subdomain aspect ratio Qd � (Nxhx)=(Nyhy) of 1:

Qd = QgQc = 1:

Example. Again take the Poisson equation on the unit square (3.4), with a grid reso-
lution Nx = 16, Ny = 32. We compare the condition number of PA for three decompositions
into 16 subdomains as shown in Figure 4.1:

�min(A
�) �min(PA) �(PA)

2� 8 0.013 0.024 83.0
4� 4 0.053 0.062 32.2
8� 2 0.014 0.024 81.8
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The 4 � 4 decomposition yields a subdomain aspect ratio of Qd = 1, and this is the

best-conditioned case, as predicted.

The decomposition problem described above assumes that the grid size and the
number of domains is given, and that one would like to choose the decomposition for
optimal convergence rate. This would be the case, for example, if a parallel decompo-
sition is desired on a prescribed number of processors. For a serial computation, or if
there are an unlimited number of available processors, a better approach would be to
ask what number of domains gives the fastest solution. Suppose we decompose into
subdomains of unit aspect ratio, as described above. By comparison with (4.2), the
smallest positive eigenvalue of A� scales as 1=N2

x , with Nx the number of grid cells
in the x direction for the worst conditioned Neumann problem. Thus if we split each
subdomain horizontally and vertically into four equivalent smaller subdomains, the
condition number of A� is improved by a factor 4, roughly speaking. On the other
hand, the dimension of the coarse grid matrix Ac will be increased by a factor 4, caus-
ing the direct (or recursive) solution of this system to be relatively more expensive.
In the extreme case of one unknown per subdomain, Ac = A, so that solving Ac is
as expensive as solving A. Clearly there must be an optimal value for the number of
subdomains; however, this will depend on the convergence of the conjugate gradients
process, and therefore also on the distribution of eigenvalues.

4.2. Discontinuous coe�cients. When a problem has a large jump in coef-
�cients at some location, poor scaling may result in slow convergence. It may be
possible to improve the convergence by applying subdomain de
ation, choosing the
subdomain interface at the discontinuity. Since the related Neumann problems are de-
coupled, a diagonal scaling preconditioner is su�cient to make the condition number
independent of the jump in coe�cients. This is best illustrated with an example.

Example. Consider a one-dimensional di�usion problem with Neumann and Dirichlet
boundary conditions

�
d

dx
�(x)

dy

dx
= f(x); x 2 (0; 1);

dy

dx
(0) = 0; y(1) = 1;

and a jump discontinuity in the coe�cient

�(x) =

�
1; x � 0:5;
�; x > 0:5;

for some � > 0. Choose an even number n and de�ne h = 1

n
. The grid points are given

by xi = ih; i = 0; : : : ; n and ui is the numerical approximation for y(xi). For all i 2
f0; 1; : : : ; n � 1g n fn

2
g we use the standard central di�erence scheme. The unknown un is

eliminated from the system of equations by using the Dirichlet boundary condition. For i = 0
the value u�1 is eliminated by a central discretization of the Neumann boundary condition.
The resulting equation is multiplied by 1

2
to make the coe�cient matrix symmetric. Finally

for i = n
2
the discrete equation is

un
2
�un

2
�1

h
� �

un
2
+1�un

2

h

h
= f(xn

2
):

The domain 
 = [0; 1] is subdivided into two subdomains 
1 = [0; 0:5] and 
2 = (0:5; 1].
Note that grid point xn

2
= 0:5 belongs to 
1. The subdomain de
ation space Z is de�ned

by (3.1).
To construct A� from A we decouple the matrix A according to the subdomains, so

a
�
n
2
+1;n

2
= a

�
n
2
;n
2
+1 = 0:
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Fig. 4.2. Eigenvalues of D�1A (�) and D�1PA (�) for � = 1 (left) and � = 0:01 (right). The
spectrum of D�1A� is indicated by the dotted lines.

The other o�-diagonal elements of A and A� are identical. Finally the diagonal elements of
A� are made equal to minus the sum of the o�-diagonal elements, so

nX
j=1

a
�
i;j = 0:

The eigenvalues ofD�1A andD�1PA (equivalent to the eigenvalues of the symmetrically
preconditioned case D�1=2AD�1=2, etc.) with n = 8 are shown in Figure 4.2 for � = 1 and
� = 0:01 with the eigenvalues of D�1A� appearing as dotted lines. Note that the smallest
positive eigenvalue of D�1A� bounds from below the smallest positive eigenvalue of D�1PA,
as predicted by Theorem 2.3.

In the following table we give the e�ective condition numbers relevant for convergence
of the preconditioned conjugate gradient method.

� �1(D
�1A) �(D�1A) �3(D

�1PA) �e�(D
�1PA)

1 2:5 � 10�2 7:9 � 101 3:8 � 10�1 5.0
10�2 4:1 � 10�4 4:8 � 103 5:0 � 10�1 4.0
10�4 4:2 � 10�6 4:8 � 105 5:0 � 10�1 4.0

Due to diagonal preconditioning, the smallest eigenvalue of D�1A� is independent of �. As

predicted by Theorem 2.3, the same holds for D�1PA. The smallest eigenvalue of D�1A,

however, decreases proportionally to �, leading to a large condition number and slow conver-

gence of the conjugate gradient method applied to D�1Ax = D�1b.

5. Additional considerations. In this section we discuss extension of de
ation
methods to the nonsymmetric case and describe an e�cient parallel implementation
of the subdomain de
ation method.

5.1. The nonsymmetric case. A generalization of the projection P for a non-
symmetric matrix A 2 R

n�n is used in [27]. In this case there is somewhat more
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freedom in selecting the projection subspaces. Let P and Q be given by

P = I �AZ(Y TAZ)�1Y T ; Q = I � Z(Y TAZ)�1Y TA:

where Z and Y are suitable subspaces of dimension n �m. The operator Ac on the
projection subspace is given by Ac = Y TAZ.3 We have the following properties for
P and Q:

� P 2 = P , Q2 = Q
� PAZ = Y TP = 0, Y TAQ = QZ = 0
� PA = AQ

To solve the system Ax = b using de
ation, note that x can be written as

x = (I �Q)x+Qx

and that (I �Q)x = Z(Y TAZ)�1Y TAx = Z(Y TAZ)�1Y T b can be computed imme-
diately (cf. (1.3)). Furthermore Qx can be obtained by solving the de
ated system

PA~x = Pb (5.1)

for ~x (cf. (1.4)) and pre-multiplying the result with Q.
Also in the nonsymmetric case de
ation can be combined with preconditioning.

Suppose K is a suitable preconditioner of A, then (5.1) can be replaced by: solve ~x
from

K�1PA~x = K�1Pb; (5.2)

and form Q~x, or solve ~y from

PAK�1~y = Pb; (5.3)

and form QK�1~y. Both systems can be solved by one's favorite Krylov subspace
solver, such as: GMRES [20], GCR [6, 23], Bi-CGSTAB [22] etc.

The question remains how to choose Y . We consider two possibilities:
1. Suppose Z consists of eigenvectors of A. Choose Y as the corresponding

eigenvectors of AT .
2. Choose Y = Z.

For both choices we can prove some results about the spectrum of PA.
Assumption 5.1. We assume that A has real eigenvalues and is nondefective.
Whenever A satis�es Assumption 5.1 there exists a matrix X 2 Rn�n such that

X�1AX = diag(�1; : : : ; �n). For the �rst choice, which is related to Hotelling de
a-
tion (see [28] p. 585), we have the following result.

Lemma 5.1. If A satis�es Assumption 5.1, Z = [x1 : : : xm], and Y is the matrix
composed of the �rst m columns of X�T , then

X�1PAX = diag(0; :::; 0; �m+1; :::; �n):

Proof. From the de�nition of P we obtain PAZ = 0, so PAxi = 0; i = 1; : : : ;m.
For the other vectors xi; i = m+ 1; : : : ; n we note that

PAxi = Axi �AZ(Y TAZ)�1Y TAxi = �ixi �AZ(Y TAZ)�1�iY
Txi = �ixi:

3In multigrid terminology, Z is the projection or interpolation operator, and Y T is the restriction
operator.
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The second choice Y = Z has the following properties.
Lemma 5.2. For Y = Z one has:

(i) If A is positive de�nite and Z has full rank, Ac = ZTAZ is nonsingular.
(ii) If A satis�es Assumption 5.1 and Z = [x1 : : : xm], the eigenvalues of PA are

f0; �m+1; :::; �ng, where m is the multiplicity of eigenvalue 0.
Proof. (i) For Y = Z the matrix Ac = ZTAZ is nonsingular since sTAcs > 0 for

all s 2 Rm and s 6= 0.
(ii) Again PAxi = 0, for i = 1; : : : ;m. For the other eigenvalues we de�ne the

vectors

vi = xi �AZA�1c ZTxi; i = m+ 1; : : : ; n:

These vectors are nonzero, because x1; :::; xn form an independent set. Multiplication
of vi by PA yields:

PAvi = PA(xi �AZA�1c ZTxi) = PAxi = Axi �AZA�1c ZTAxi = �ivi;

which proves the lemma.
From these lemmas we conclude that both choices of Y lead to the same spectrum

of PA. The second choice has the following advantages: when A is positive de�nite we
have proven that Ac is nonsingular, it is not necessary to determine (or approximate)
the eigenvectors of AT , and �nally only one set of vectors z1; : : : ; zm has to be stored
in memory. This motivates us to use the choice Y = Z. In our applications Z is not
an approximation of an invariant subspace of A but is de�ned as in (3.1).

Theorems 2.2 and 2.3 do not apply to the nonsymmetric case. However, our
experience has shown that the convergence of (5.1) is similar to that of (1.4) as long
as the asymmetric part of A is not too dominant.

5.2. Parallel implementation. In this section we describe an e�cient paral-
lel implementation of the subdomain de
ation method with Z de�ned by (3.1). We
distribute the unknowns according to subdomain across available processors. For the
discussion we will assume one subdomain per processor. The coupling with neighbor-
ing domains is realized through the use of virtual cells added to the local grids. In
this way, a block-row of Ax = b corresponding to the subdomain ordering

A =

2
64
A11 � � � A1m

...
...

...
Am1 � � � Amm

3
75 ; (5.4)

can be represented locally on one processor: the diagonal block Aii represents coupling
between local unknowns of subdomain i, and the o�-diagonal blocks of block-row i
represent coupling between local unknowns and the virtual cells.

Computation of element Acij of Ac = ZTAZ can be done locally on processor i
by summing the coe�cients corresponding to block Aij of (5.4): Acij = 1TAij1.

Use of the de
ation P within a Krylov subspace method involves pre-multiplying
a vector v by PA:

PAv = (I �AZ(ZTAZ)�1ZT )Av:

Assuming A�1c has been stored in factored form, this operation requires two multi-
plications with A. However, the special form of Z given by (3.1) allows some sim-
pli�cation. Since Z is piecewise constant, we can e�ciently compute and store the
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vectors

cj = Azj =

2
64
A1j

...
Amj

3
75 1; (5.5)

corresponding to row sums of the jth block-column of A. Note that for the ith block
system the local block of cj is nonzero only if there is coupling between subdomains
i and j, and only the nonzero blocks of cj need be stored. Thus, for a �ve point
stencil the number of nonzero vectors cj which have to be stored per block is �ve.
Furthermore, for many applications, the row sums are zero, and the cj is only nonzero
on subdomain boundaries.

With the cj stored, local computation of AZ~e for a given (m-dimensional) vector
~e consists of scaling the nonzero cj by the corresponding ~ej and summing them up:
AZ~e =

P
j ~ejcj . The number of vector updates is �ve for a �ve-point stencil.

In parallel, we �rst compute and store the (nonzero parts of the) cj and (Z
TAZ)�1

(factored) on each processor. In particular, on processor i we store the local part
cj = Aij1 for all nonzero Aij . Then to compute PAv we �rst perform the matrix-
vector multiplication w = Av, requiring nearest neighbor communications. Next we
compute the local contribution to the restriction ~w = ZTw (local summation over all
grid points) and distribute the result to all processes. With this done, we solve for ~e
from Ac~e = ~w and �nally compute AZ~e =

P
j ~ejcj locally.

The total parallel communication involved in the matrix vector multiplication and
de
ation are a nearest neighbor communication of the length of the interfaces and a
global gather-broadcast of dimension m.

The computational and communication costs plus storage requirements of sub-
domain de
ation are summarized in the following table, assuming a �ve-point dis-
cretization stencil on an Nx � Ny grid with Mx �My decomposition into blocks of
revolution nx� ny (Nx = nxMx, Ny = nyMy). The abbreviation GaBr (m) refers to
a gather-broadcast operation in which a set of m distributed 
oating point numbers
are gathered from the participating processors and then whole set returned to each
processor. The construction costs are incurred only once, whereas the iteration costs
are in each conjugate gradient iteration. Also included in the table are the costs of
an (in the parallel case, block-wise) incomplete factorization preconditioner with zero
�ll-in, ILU(0).

Besides the items tabulated above, there are computation and communication
costs associated with the matrix-vector multiplication and inner products as well as
computational costs of vector updates, associated with the CG method. Based on
this table, we expect the added iteration expense of de
ation to be less expensive
than an ILU(0) factorization, and that the method will parallelize very e�ciently on
a distributed memory computer.

6. Numerical experiments. All experiments in this section are conducted with
PDEs discretized using cell-centered, central �nite volumes on Cartesian grids in
rectangular regions. The theory discussed until now makes no such assumptions
however, and should hold in a more general, unstructured setting.

In conducting numerical experiments, we are interested in the following issues: (i)
veri�cation of the theoretical results of this article, (ii) the properties of subdomain
de
ation for nonsymmetric systems, and (iii) the parallel performance of the method.
To this end we consider three test cases:
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Table 5.1

Work, storage, and communication costs for de
ation-based preconditioning.

sequential parallel

work storage work storage comms

Construction:

ILU(0) 6NxNy NxNy 6nxny nxny 0
Ac 5NxNy 5MxMy 5nxny 5MxMy GaBr (5MxMy)
Band-factor Ac 2M3

xMy 2M2
xMy 2M3

xMy 2M2
xMy 0

AZ 9NxNy 5NxNy 9nxny 9nxny 0

Iteration:

Backsolve IC(0): 10NxNy 10nxny 0
Restriction: s = ZTAv NxNy nxny 0
Backsolve: Ac~e = s 4M2

xMy 4M2
xMy GaBr (MxMy)

Prolongation: AZ~e 5NxNy 5nxny 0
Vector update: Av �AZ~e NxNy nxny 0

I. Poisson equation: ��u(x; y) = f
II. di�usion equation: �r � �(x; y)ru(x; y) = f
III. steady-state convection-di�usion equation: r�(a(x; y)u(x; y))��u(x; y) = f .

In most examples we take f � 1, having checked that similar results are observed
for a random right hand side function. We use a global grid resolution Nx � Ny,
with decomposition into Mx � My subdomains, each of resolution nx � ny (thus,
Nx = nxMx and Ny = nyMy).

We solve the resulting discrete (symmetric) system using the conjugate gradient
method (CG) and subdomain de
ation. The initial iterate is chosen to be x(0) = 0,
and convergence is declared when, in the Jth iteration, krJk � tol � kr0k, for tol =
10�6.

When classical preconditioning is included, we solve K�1PAx = K�1Pb, where
the preconditionerK used on the blocks is the relaxed incomplete Cholesky (RIC) fac-
torization of [1], with relaxation parameter ! = 0:975. We choose this preconditioner
because it is simple to implement (for a �ve point stencil, modi�cations only occur on
the diagonal) and is reasonably e�ective. Certainly, more advanced preconditioners
could be employed on the blocks of A�.

6.1. Convergence results. In this section we give convergence results with
Problems I, II and III to illustrate the insensitivity of the convergence to the number
of subdomains, the optimal decomposition on stretched grids, the e�ectiveness of the
method for problems with discontinuous coe�cients, and the convergence behavior
for nonsymmetric problems.

6.1.1. Near grid independence. First we illustrate the sense in which subdo-
main de
ation can lead to nearly grid-independent convergence. The symmetric dis-
cretization matrix of Problem I on (0; 1)�(0; 1) with homogeneous Dirichlet boundary
conditions is used without preconditioning. Keeping the resolution of each subdomain
�xed, the number of subdomains is increased. In so doing, the blocks of A� remain
roughly the same as the grid is re�ned, and the bound in (2.1) becomes insensitive to
the number of blocks m for large enough m.

Assume Mx = My and nx = ny. Figure 6.1 shows the scaled number of CG
iterations J=nx (note that nx is constant along each line in the �gure) for Problem
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I as the grid is re�ned keeping the subdomain resolution nx �xed at values of 10, 50
and 200. The lines are almost indistinguishable from one another. It is apparent from
the �gure that|using only subdomain de
ation|the number of iterations required
for convergence is bounded independent of the number of subdomains. The same
qualitative behavior is observed with preconditioning.
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Fig. 6.1. Number of iterations J divided by the subdomain resolution nx � ny 2 f10; 50; 200g
with and without de
ation.

6.1.2. Stretched grid. We consider Problem I on (0; 3)� (0; 1) with homoge-
neous Dirichlet boundary conditions, and Nx = 36 and Ny = 72. The cell aspect
ratio is Qc = hx=hy = (3=36)=(1=72) = 6. Based on the discussion of Section 4.1,
the best condition number is expected for a subdomain aspect ratio Qd = 1, asso-
ciated with a subdomain grid aspect ratio of Qg = Qd=Qc = 1=6. Table 6.1 gives
the number of iterations required for convergence for 5 di�erent decompositions into
12 equally sized subdomains. The solution tolerance of the non-preconditioned CG
algorithm was set to tol = 10�2, prior to the onset of superlinear convergence, to ob-
tain these results. The 6� 2 decomposition with Qd = 1 gives the minimum number
of iterations, in keeping with the discussion. We note that if iteration is continued
to high tolerance, the superlinear convergence e�ect may give quite di�erent results
than shown here. This domain decomposition selection strategy is most useful when
the condition number governs the convergence rate.

Table 6.1

Iterations required for Problem I for di�erent decompositions

Mx �My nx � ny Qd J
2� 6 18� 12 9 73
3� 4 12� 18 4 63
4� 3 9� 24 9/4 56
6� 2 6� 36 1 48
12� 1 3� 72 1/4 50
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6.1.3. Discontinuous coe�cients. To further illustrate the discussion of Sec-
tion 4.2 we give results for the Problem II on (0; 1)� (0; 1) with boundary conditions
ux(0; y) � uy(x; 0) � uy(x; 1) � 0, u(1; y) � 0. We de�ne the di�usion coe�cient have
value �(x; y) = 1 on the lower left subdomain, including its interfaces, and �(x; y) = �
elsewhere. Table 6.2 gives the the iterations for CG with diagonal preconditioning for
Mx =My = 3 and nx = ny = 30, as � is decreased.

One observes that this is a very e�ective strategy for eliminating the e�ect of the
jump in coe�cients.

Table 6.2

Iterations for Problem II with discontinuous coe�cients.

� no de
ation de
ation
1 295 151
10�2 460 183
10�4 521 189
10�6 628 189

6.1.4. A nonsymmetric example. We also illustrate the convergence of the
de
ation method for a convection dominated Problem III on (0; 1) � (0; 1) with re-
circulating wind �eld a1(x; y) = �80xy(1� x), a2(x; y) = 80xy(1� y) and boundary
conditions u(x; 0) � u(y; 0) � u(x; 1) � 0, ux(1; y) = 0. The grid parameters are
Nx = Ny, Mx =My, nx = ny with grid spacing given by

xi = (i=Nx)
2(3� 2(i=Nx)):

The resulting system is solved using GCR truncated to a subspace of 20 vectors
by dropping the vector most nearly orthogonal to the current search direction[24].
Classical preconditioning in the form of RILU(0.975) is incorporated. The restriction
matrix for de
ation is chosen to be Y = Z.

Table 6.3 gives the required number of GCR iterations as the number of subdo-
mains is increased keeping the subdomain resolution �xed at nx = 50. Although the
number of iterations is not bounded in the de
ated case, it grows much slower than
the nonde
ated case.

Table 6.3

Scalability for a nonsymmetric problem, subdomain grid 50� 50.

Mx no de
ation de
ation
1 42 42
2 122 122
3 224 191
4 314 235
5 369 250
6 518 283
7 1007 377

6.2. Parallel performance. For the results in this section, Problem I will be
solved on (0; 1)� (0; 1) with homogeneous Dirichlet boundary conditions everywhere.

The resulting equations are solved with CG preconditioned with RIC(0.975). Our
implementation does not take advantage of the fact that some of the row sums may
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be zero in (5.5). Each processor is responsible for exactly one subdomain. Parallel
communications were performed with MPI, using simple point to point and collective
communications. No exploitation of the network topology was used. Parallel results
were obtained from a Cray T3E. Wall-clock times in seconds were measured using the
MPI timing routine.

6.2.1. Speedup for �xed problem size. To measure the speedup, we choose
p = M2

x processors for Mx 2 f1; 2; 3; 4; 5; 6; 8g. The results are given in Tables 6.4
and 6.5 for Nx = 120 and Nx = 480, respectively. The total number of iterations
is denoted by J ; the time to construct the incomplete factorization and de
ation
operator is denoted by tconst; and the time spent in iterations is denoted by titer.
The speedup is determined from s = (titerjp=1) =

�
titerjp=M2

x

�
and parallel e�ciency

by e� = s=p.
In Table 6.4 the parallel e�ciency decreases from 58% on four processors to only

19% on 64 processors, whereas in Table 6.5 e�ciency increases slightly from 77%
to 88%. We expect that the poorer performance in the �rst table is due to both a
relatively large cost of solving the coarse operator Ac and a large communication-
to-computation ratio for small subdomains. The following factors contribute to the
parallel performance:

� As more subdomains are added, the relative size of the de
ation system Ac

increases, making it more expensive to solve, but at the same time, its solution
becomes a better approximation of the global solution.

� As the size of the subdomain grids decreases, the RILU preconditioner be-
comes a better approximation of the exact solution of the subdomain prob-
lems.

� Global communications become more expensive for many subdomains.
� Additionally there may be architecture dependent e�ects in play.

Table 6.4

Speedup for Problem I on a 120� 120 grid.

p J tconst titer s e�

1 38 8:7 � 10�3 1.3 { {
4 58 1:2 � 10�2 0.57 2.3 0.58
9 68 5:0 � 10�3 0.33 4.0 0.44
16 64 5:3 � 10�3 0.18 7.2 0.45
25 57 4:3 � 10�3 0.15 9.0 0.36
36 50 7:6 � 10�3 0.11 11.7 0.33
64 41 1:1 � 10�2 0.11 12.3 0.19

6.2.2. Scaled performance for �xed subdomain size. Table 6.6 gives the
computation times in seconds obtained with and without de
ation, keeping the sub-
domain size �xed at nx 2 f5; 10; 20; 50; 100; 200g as the number of processors is
increased. It is clear that the e�ect of de
ation is to make the parallel computation
time less sensitive to the number of processors.

We have already seen that the number of iterations levels o� as a function of
the number of subdomains. The results of this table show that also the parallel
iteration time becomes relatively insensitive to an increase in the number of blocks.
Some overhead is incurred in the form of global communications, and in solving the
de
ation subsystem. As a result, the computation times are not bounded independent
of the number of subdomains.



DEFLATION BASED PRECONDITIONERS 19

Table 6.5

Speedup for Problem I on a 480� 480 grid.

p J tconst titer s e�

1 120 1:4 � 10�1 67.3 { {
4 137 1:3 � 10�1 21.8 3.1 0.77
9 138 6:3 � 10�2 9.65 7.0 0.78
16 139 3:6 � 10�2 5.60 12.0 0.75
25 121 2:5 � 10�2 3.21 21.0 0.84
36 118 2:2 � 10�2 2.27 29.7 0.82
64 100 1:3 � 10�2 1.19 56.6 0.88

Comparing the iteration counts for this problem, we note that the ratio of itera-
tions with and without de
ation is very similar to that of Figure 6.1 without precon-
ditioning. Furthermore, the cost per iteration scales with n2x for nx � 20 (for smaller
nx, the cost of de
ation o�sets the advantage gained). The e�ect of preconditioning
is to reduce the necessary number of iterations in both the de
ated and unde
ated
cases such that ratio of iterations remains �xed. We therefore expect that the ratio
of computation times with and without de
ation should re
ect the ratios of Figure
6.1 as well.

Table 6.6

Scaled performance for Problem I with �xed subdomain size nx.

nx p = 1 p = 4 p = 9 p = 16 p = 25 p = 36 p = 64

5 no de
. 4 � 10�4 4 � 10�3 1 � 10�2 2 � 10�2 3 � 10�2 4 � 10�2 4 � 10�2

de
. | 5 � 10�3 1 � 10�2 1 � 10�2 2 � 10�2 3 � 10�2 4 � 10�2

10 no de
. 1 � 10�3 9 � 10�3 3 � 10�2 3 � 10�2 5 � 10�2 6 � 10�2 7 � 10�2

de
. | 1 � 10�2 3 � 10�2 4 � 10�2 5 � 10�2 6 � 10�2 6 � 10�2

20 no de
. 6 � 10�3 3 � 10�2 6 � 10�2 8 � 10�2 0.12 0.15 0.18
de
. | 3 � 10�2 7 � 10�2 8 � 10�2 0.10 0.11 0.13

50 no de
. 0.11 0.34 0.51 0.69 0.94 1.10 1.37
de
. | 0.35 0.57 0.64 0.71 0.75 0.77

100 no de
. 0.78 2.11 2.98 4.10 5.29 6.23 8.00
de
. | 2.10 3.27 3.46 3.58 3.89 3.97

200 no de
. 4.96 13.3 18.6 25.3 32.8 38.6 49.7
de
. | 12.9 17.6 20.4 20.8 22.5 23.3

7. Conclusions. In this paper we have given new e�ective condition number
bounds for de
ated systems, both with and without conventional preconditioning.
Speci�cally, we show that choosing the de
ation subspace to be constant on subdo-
mains e�ectively decouples the problem into a set of related Neumann problems, with
the convergence governed by the \worst conditioned" Neumann problem. This knowl-
edge can help to choose an e�ective decomposition of the domain, and is especially
useful for problems with large discontinuities in the coe�cients. Numerical exper-
iments illustrate that the convergence rate is nearly independent of the number of
subdomains, and that the method can be very e�ciently implemented on distributed
memory parallel computers.
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